人工智能常用的算法有:线性回归、逻辑回归、决策树、朴素贝叶斯、支持向量机等。线性回归 线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x值)和数值结果(y值)。
人工智能十大算法是朴素贝叶斯算法、K近邻算法、决策树算法、支持向量机算法、神经网络算法、遗传算法、粒子群算法、蚁群算法、随机森林算法、协同过滤算法,具体如下:朴素贝叶斯算法(Naive Bayes):是一种基于贝叶斯定理的分类算法,常用于文本分类、垃圾邮件过滤等领域。
人工智能十大算法——人工神经网络 人工神经网络(ANN)以大脑处理机制作为基础,开发用于建立复杂模式和预测难题的计算方法。该类型计算方法在语音、语义、视觉、各类游戏等任务中表现极好,但需要大量数字资料进行训练,且训练要求很高的硬件配置。
人工智能中的算法种类神经网络算法:人工神经网络系统是20世纪40年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。K-最近邻算法(K-NearestNeighbors,KNN)非常简单。
既然决策树就是一种特征选择的方法,那么经典决策树算法其实就是使用了不同的特征选择方案。 如: (1)ID3:使用信息增益作为特征选择 (2)C5:使用信息增益率作为特征选择 (3)CART:使用GINI系数作为特征选择 具体选择的方法网上一大把,在这里我提供几个链接,不细讲。
【答案】:决策树是将可能结果和相互依赖的选择表示在多阶段或者有先后顺序的决策过程中的一种示意图。这种树状图由左向右构建,用方格表示决策节点,用圆圈表示不可控(机会)事件。每个分支的盈亏用货币数量表示在右边。决策树是将盈利乘以它们(指定给各个机会事件)的概率来逆向分析的(从右向左)。
剪枝(pruning)则是决策树算法对付过拟合的主要手段,剪枝的策略有两种如下:定义:预剪枝就是在构造决策树的过程中,先对每个结点在划分前进行估计,如果当前结点的划分不能带来决策树模型泛化性能的提升,则不对当前结点进行划分并且将当前结点标记为叶结点。
决策树是我们管理学中计算分险型决策的主要方法。其基本原理是用决策点代表决策问题,用方案分枝代表可供选择的方案,用概率分枝代表方案可能出现的各种结果,经过对各种方案在各种结果条件下损益值的计算比较,为决策者提供决策依据。
节点顺序的排列规则:熵变:数据的预处理:改进思路一般有两个1,换算法;2,调参数 做好数据的预处理:1,做好特征选择;2,做好数据离散化、异常值处理、缺失填充 分类器:在决策树中,从根到达任意一个叶节点的之间最长路径的长度,表示对应的算法排序中最坏情况下的比较次数。
内部节点:就是树中间的那些节点,比如说“温度”、“湿度”、“刮风”;叶节点:就是树最底部的节点,也就是决策结果。剪枝就是给决策树瘦身,防止过拟合。分为“预剪枝”(Pre-Pruning)和“后剪枝”(Post-Pruning)。预剪枝是在决策树构造时就进行剪枝。
1、决策树模型可用于特征质量判断,比如上述是否抽烟、是否喝酒、年龄、体重等4项,该四项对于‘是否患癌症’的预测作用重要性大小可以进行排名用于筛选出最有用的特征项。
2、探索决策树的多样分类:决策树这一强大的数据挖掘工具,其分类方法丰富多样,每一种都针对特定问题和数据特性进行了优化。让我们一起深入剖析这三大主流决策树算法:IDC5和CART。首先,我们来到ID3的世界,它以信息增益作为核心原则。
3、第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。
4、由于数据表示不当、有噪声或者由于决策树生成时产生重复的子树等原因,都会造成产生的决策树过大。因此,简化决策树是一个不可缺少的环节。
5、根据这三个步骤,可以确定决策树由:(1)特征选择;(2)生成方法;(3)剪枝,组成。
6、决策树的典型算法有ID3,C5,CART等。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C5算法排名第一。C5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。